Although the control circuit of the controller varies in complexity depending on the PV system, the basic principle is the same. The diagram below shows. . According to the controller on the battery charging regulation principle, the commonly used charge controller can be divided into 3 types. 1.. . The most basic function of the solar charge controller is to control the battery voltage and turn on the circuit. In addition, it stops charging the battery when the battery voltage rises to a. [pdf]
There is a switch between the solar panel and the battery and another switch between the battery and to load. Besides, it senses the battery voltage and panel presence. That’s it in a very simple way. Check this block diagram of the Solar Charge Controller circuit. Here SW is the switch.
In a solar power system, energy is harvested from sunlight and stored in a battery; then, the battery gives us power backup when required. This is very simple. But the problem is, each battery has a limit of taking charge and being discharged. That is why we need a controller to control both the charge and discharge limit.
The diagram below shows the working principle of the most basic solar charge and discharge controller. The system consists of a PV module, battery, controller circuit, and load. Switch 1 and Switch 2 are the charging switch and the discharging switch, respectively.
PWM (pulse-width modulation) charge controllers depend on older, less reliable hardware and enable you to adjust the solar panel’s voltage to the battery voltage. E.g., if you were to run a nominal 12-volt solar panel through a PWM charging controller, you need a 12-volt battery bank.
A charge controller must be capable of handling this power output without being overloaded. Therefore, it’s essential to tally the combined wattage of all solar panels in the system and choose a controller with a corresponding or higher wattage rating.
MPPT controllers can extract up to 30% more power from the solar panels compared to PWM controllers, making them an ideal choice for larger installations or systems where maximizing energy harvest is critical. Both PWM and MPPT solar charge controllers offer distinct advantages tailored to different system requirements and budgets.
VoltGrid Solutions is committed to delivering dependable power storage for critical infrastructure and renewable systems worldwide.
From modular lithium cabinets to full-scale microgrid deployments, our team offers tailored solutions and responsive support for every project need.